Simple Unsupervised Grammar Induction from Raw Text with Cascaded Finite State Models

نویسندگان

  • Elias Ponvert
  • Jason Baldridge
  • Katrin Erk
چکیده

We consider a new subproblem of unsupervised parsing from raw text, unsupervised partial parsing—the unsupervised version of text chunking. We show that addressing this task directly, using probabilistic finite-state methods, produces better results than relying on the local predictions of a current best unsupervised parser, Seginer’s (2007) CCL. These finite-state models are combined in a cascade to produce more general (full-sentence) constituent structures; doing so outperforms CCL by a wide margin in unlabeled PARSEVAL scores for English, German and Chinese. Finally, we address the use of phrasal punctuation as a heuristic indicator of phrasal boundaries, both in our system and in CCL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Induction of Tree Substitution Grammars for Dependency Parsing

Inducing a grammar directly from text is one of the oldest and most challenging tasks in Computational Linguistics. Significant progress has been made for inducing dependency grammars, however the models employed are overly simplistic, particularly in comparison to supervised parsing models. In this paper we present an approach to dependency grammar induction using tree substitution grammar whi...

متن کامل

Memory-Bounded Left-Corner Unsupervised Grammar Induction on Child-Directed Input

This paper presents a new memory-bounded left-corner parsing model for unsupervised raw-text syntax induction, using unsupervised hierarchical hidden Markov models (UHHMM). We deploy this algorithm to shed light on the extent to which human language learners can discover hierarchical syntax through distributional statistics alone, by modeling two widely-accepted features of human language acqui...

متن کامل

Improving Unsupervised Dependency Parsing with Richer Contexts and Smoothing

Unsupervised grammar induction models tend to employ relatively simple models of syntax when compared to their supervised counterparts. Traditionally, the unsupervised models have been kept simple due to tractability and data sparsity concerns. In this paper, we introduce basic valence frames and lexical information into an unsupervised dependency grammar inducer and show how this additional in...

متن کامل

Scalable semi-supervised grammar induction using cross-linguistically parameterized syntactic prototypes

This thesis is about the task of unsupervised parser induction: automatically learning grammars and parsing models from raw text. We endeavor to induce such parsers by observing sequences of terminal symbols. We focus on overcoming the problem of frequent collocation that is a major source of error in grammar induction. For example, since a verb and a determiner tend to co-occur in a verb phras...

متن کامل

The Unsupervised Acquisition of a Lexicon from Continuous Speech

We present an unsupervised learning algorithm that acquires a natural-language lexicon from raw speech. The algorithm is based on the optimal encoding of symbol sequences in an MDL framework, and uses a hierarchical representation of language that overcomes many of the problems that have stymied previous grammar-induction procedures. The forward mapping from symbol sequences to the speech strea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011